Hierarchical Quickest Change Detection via Surrogates

نویسندگان

  • Prithwish Chakraborty
  • Sathappan Muthiah
  • Ravi Tandon
  • Naren Ramakrishnan
چکیده

Change detection (CD) in time series data is a critical problem as it reveal changes in the underlying generative processes driving the time series. Despite having received significant attention, one important unexplored aspect is how to efficiently utilize additional correlated information to improve the detection and the understanding of changepoints. We propose hierarchical quickest change detection (HQCD), a framework that formalizes the process of incorporating additional correlated sources for early changepoint detection. The core ideas behind HQCD are rooted in the theory of quickest detection and HQCD can be regarded as its novel generalization to a hierarchical setting. The sources are classified into targets and surrogates, and HQCD leverages this structure to systematically assimilate observed data to update changepoint statistics across layers. The decision on actual changepoints are provided by minimizing the delay while still maintaining reliability bounds. In addition, HQCD also uncovers interesting relations between changes at targets from changes across surrogates. We validate HQCD for reliability and performance against several state-of-the-art methods for both synthetic dataset (known changepoints) and several real-life examples (unknown changepoints). Our experiments indicate that we gain significant robustness without loss of detection delay through HQCD. Our real-life experiments also showcase the usefulness of the hierarchical setting by connecting the surrogate sources (such as Twitter chatter) to target sources (such as Employment related protests that ultimately lead to major uprisings).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quickest Detection with Social Learning: Interaction of local and global decision makers

We consider how local and global decision policies interact in stopping time problems such as quickest time change detection. Individual agents make myopic local decisions via social learning, that is, each agent records a private observation of a noisy underlying state process, selfishly optimizes its local utility and then broadcasts its local decision. Given these local decisions, how can a ...

متن کامل

Data-Efficient Quickest Change Detection

In the classical problem of quickest change detection, a decision maker observes a sequence of random variables. At some point in time, the distribution of the random variables changes abruptly. The objective is to detect this change in distribution with minimum possible delay, subject to a constraint on the false alarm rate. In many applications of quickest change detection, e.g., where the ch...

متن کامل

Quickest Detection of Drift Change for Brownian Motion in Generalized Bayesian and Minimax Settings

The paper deals with the quickest detection of a change of the drift of the Brownian motion. We show that the generalized Bayesian formulation of the quickest detection problem can be reduced to the optimal stopping problem for a diffusion Markov process. For this problem the optimal procedure is described and its characteristics are found. We show also that the same procedure is asymptotically...

متن کامل

Quickest detection of intensity change for Poisson process in generalized Bayesian setting

The paper deals with the quickest detection of intensity change for Poisson process. We show that the generalized Bayesian formulation of the quickest detection problem can be reduced to the conditional-extremal optimal stopping problem for a piecewise-deterministic Markov process. For this problem the optimal procedure is described and its characteristics are found.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.09739  شماره 

صفحات  -

تاریخ انتشار 2016